Samarth Rural Education Institute's

SAMARTH COLLEGE OF COMPUTER SCIENCE, BELHE Assignment no.1

Sub: Operating Systems- II Submission Date: 12/81/2024

Q.1 Consider a system with 5 Processes (P0,P1,P2,P3,P4) and four resources types

(A, B, C, D). There are 3 instances of type A, 14 instances of type B, 12 instances of type C and 12 instances of type D. The allocation and maximum Demand matrices are as follows:

		Allocation		
	Α	8	C	D
PO	0	6	3	2
P1	0	0	1	2
P2	1	0	0	0
23	1	3	5	4
P4	0	0	1	4

	Max			
	A	B	C	D
PO	0	6	5	2
P1	0	0	1	2
P2	0	7	5	0
P3	2	3	5	6
P4	0	6	5	6

Answer the following questions using Banker's algorithm.

- 1. What are the contents of the need array?
- 2. Is a System in a safe state?
- 3. If the request from process P4 arrives for (0,0,4,1) can the request be immediately granted?

Q.2 Consider a system with 7 processes A through G and six types of resources R through W with one resource for each type. Resource ownership is as follows:

A holds nothing but wants T, B holds nothing but wants S

Cholds nothing but wants 5, Dholds U and wants 5 and T

Eholds T and wants V, Fholds W and wants S

G holds V and wants U

is the system deadlocked, and if so, which processes are involved?

Q3. Consider the following sets P, R and E:

P = {P1, P2, P3}

R = {R1, R2, R3, R4}

 $E = \{P1 \rightarrow R1, P2 \rightarrow R3, R1 \rightarrow P2, R2 \rightarrow P2, R2 \rightarrow P1\}$

Also consider the following number of instances per resource type:

- (i) One instance of resource type R1 and R3
- (ii) Two instances of resource type R2.
- (iii) Three instances of resources type R4.

Consider the resource – allocation graph for the above problem. Check Whether the system is in the deadlock.

Q.4 Explain the term 'select a victim and rollback' in the context of deadlock recovery.

Q.5 Consider given snapshot of system. A system has 5 processes and 3 types of resources A,B,C

		Allocation	
	A	B	C
PO	2	8	5
P1	2	2	3
P2	3	2	2
P3	1	1	3
P4	3	3	4

	Max		
	A	B	C
PO-	3	10	6
P1	3	4	3
P2	3	.7	.8
P3	1	2	3
P4	3	8	7

Available		
A	В	(
0	2	1

Answer the following questions using Banker's Algorithm:

- (i) What is the context of the need matrix?
- (ii) Is the system in safe state? If yes, Give the safe

sequence.

Q.6 Answer the Following Terms: (in Short)

- i) "Wait for a graph" is used for deadlock avoidance in the System. True/False? Justify.
- II) What is deadlock? state different methods to handle deadlock.
- III) What is Starvation?
- Iv) State the necessary conditions for a deadlock to occur.
- v) Define request edge and claim edge